Worksheet -13 Subject: - Mathematics Class: - VIII Teacher: - Ms. Nancy

Name: _____ Class & Sec: _____ Roll No. ____ Date: 15.05.2020

Exercise 3.2

Question 1:

Find x in the following figures:

Answer 1:

(a) Here, 125°+m=180°

$$m = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

and
$$125^{\circ} + n = 180^{\circ}$$

 $\Rightarrow n = 180^{\circ} - 125^{\circ} = 55^{\circ}$

[Linear pair]

[Linear pair]

 x^o Exterior angle x^o = Sum of opposite interior angles

$$x^{\circ} = 55^{\circ} + 55^{\circ} = 110^{\circ}$$

(b) Sum of angles of a pentagon = $(n-2)\times180^{\circ}$

$$= (5-2) \times 180^{\circ}$$

= $3 \times 180^{\circ} = 540^{\circ}$

By linear pairs of angles,

$$\angle 1 + 90^{\circ} = 180^{\circ}$$

$$\angle 2+60^{\circ}=180^{\circ}$$

 $\angle 3+90^{\circ}=180^{\circ}$

$$\angle 4 + 70^{\circ} = 180^{\circ}$$

$$\angle 5 + x = 180^{\circ}$$

.....(iv)

....(1)

....(iii)

....(ii)

Adding eq. (i), (ii), (iii), (iv) and (v), $x+(\angle 1+\angle 2+\angle 3+\angle 4+\angle 5)+310^{\circ}=900$

$$\Rightarrow x+540^{\circ}+310^{\circ}=900^{\circ} \Rightarrow x+850^{\circ}=900^{\circ}$$

$$\Rightarrow x = 900^{\circ} - 850^{\circ} = 50^{\circ}$$

125"

Question 2:

Find the measure of each exterior angle of a regular polygon of:

(a) 9 sides

(b) 15 sides

Answer 2:

Sum of angles of a regular polygon = (n−2)×180°

$$= (9-2) \times 180^{\circ} = 7 \times 180^{\circ} = 1260^{\circ}$$

Each interior angle =
$$\frac{\text{Sum of interior angles}}{\text{Number of sides}} = \frac{1260^{\circ}}{9} = 140^{\circ}$$

Each exterior angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

(ii) Sum of exterior angles of a regular polygon = 360°

Each interior angle =
$$\frac{\text{Sum of interior angles}}{\text{Number of sides}} = \frac{360^{\circ}}{15} = 24^{\circ}$$

Question 3:

How many sides does a regular polygon have, if the measure of an exterior ang

Answer 3:

Let number of sides be n.

Sum of exterior angles of a regular polygon = 360°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each interior angle}} = \frac{360^{\circ}}{24^{\circ}} = 15$$

Hence, the regular polygon has 15 sides.

Question 4:

How many sides does a regular polygon have if each of its interior angles is 165°?

Answer 4:

Let number of sides be n.

Exterior angle = 180°-165°=15°

Sum of exterior angles of a regular polygon = 360°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each interior angle}} = \frac{360^{\circ}}{15^{\circ}} = 24$$

Hence, the regular polygon has 24 sides.

Question 5:

- (a) Is it possible to have a regular polygon with of each exterior angle as 22°?
- (b) Can it be an interior angle of a regular polygon? Why?

Answer 5:

- (a) No. (Since 22 is not a divisor of 360°)
- (b) No, (Because each exterior angle is 180" 22" = 158°, which is not a divisor of 360°)

Question 6:

- (a) What is the minimum interior angle possible for a regular polygon? Why?
- (b) What is the maximum exterior angle possible for a regular polygon?

Answer 6:

- (a) The equilateral triangle being a regular polygon of 3 sides has the least measure of an interior angle of 60°.
 - ∵ Sum of all the angles of a triangle = 180°
 - $x + x + x = 180^{\circ}$
 - \Rightarrow $3x=180^{\circ}$
 - $\Rightarrow x = 60^{\circ}$
- (b) By (a), we can observe that the greatest exterior angle is $180^{\circ} 60^{\circ} = 120^{\circ}$.